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Evaluating Symmetry in 3-dimensional 
Simulation Data 
C. Nathan Woods, XCP-8 

Introduction 
The increasing use of three-dimensional simulations has led to an increased need for effective 
verification and validation, or V&V. Unfortunately, the high computational cost associated with three-
dimensional simulations makes many standard V&V techniques cost-prohibitive. Given these 
circumstances, we must pay close attention to V&V metrics that can be evaluated using only a single 
simulation. One of the simplest of these metrics is the evaluation of physical symmetries. This report 
details a method of computing the deviation from symmetry in a three-dimensional dataset with an 
arbitrarily distributed mesh. Examples are presented for spherical and axisymmetric systems using the 
Paraview post-processing analysis workflow. 

Overview 
The essential idea of this algorithm is to compare a field value at a given point or cell against the average 
value of that field among all points or cells that ought to be symmetric. We will assume that our data is 
defined on a mesh that is not exactly symmetric, and that cell quantities are defined at cell centroids. 
The lack of an aligned grid is the principal challenge to this analysis, and we show how to overcome it. 

Averaging 3D Data over Surfaces of Symmetry 
Suppose that we have a field 𝜙𝜙:𝑀𝑀 → ℝ𝑛𝑛 and we wish to average it over some surface 𝑆𝑆 ⊂ 𝑀𝑀. The field 
𝜙𝜙 is represented as a set of scalar or vector values at discrete points (denoted by 𝜙𝜙𝑖𝑖) which do not 
necessarily coincide with the surface 𝑆𝑆. Using continuous functions and variables, we would compute 
the average value of 𝜙𝜙 over 𝑆𝑆 by integration: 

𝜙𝜙� ≡ ∬ 𝜙𝜙 𝑑𝑑𝑆𝑆𝑆𝑆 ∬ 𝑑𝑑𝑆𝑆𝑆𝑆� . 

Since we do not assume that we have a set of discrete facets that aligns with the grid, we must find 
some way to approximate this integral. We do not choose to interpolate grid values onto the aligned 
surface. Instead, we will perform a weighted integration, with the weight function chosen to include 
only those values which ought to affect the average. The only discrete numerical operation we will need 
is a volume integral:  

� 𝜙𝜙 𝑑𝑑𝑑𝑑
𝑉𝑉

≈� 𝜙𝜙𝑖𝑖 Δ𝑑𝑑𝑖𝑖
𝑖𝑖

 

In choosing our weight function, we want something that varies smoothly across its extent while 
ignoring points that are far from the averaging surface. In other words, we want to sample our field with 
a 𝐶𝐶∞-continuous function that has compact support (i.e. it is identically zero outside of a well-defined 
area). This class of functions is commonly called bump functions 
(https://en.wikipedia.org/wiki/Bump_function), and one example is: 

https://en.wikipedia.org/wiki/Bump_function


Ψ(𝑥𝑥) = �exp �
1

(𝑥𝑥2 − 1)� ; 𝑥𝑥 ∈ (−1, 1)

0 ; 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

In our case, we want to be able to control the width of our bump, which yields: 

Ψ(𝑥𝑥,ℎ) = �exp�
ℎ2

(𝑥𝑥2 − ℎ2)� ; 𝑥𝑥 ∈ (−ℎ,ℎ)

0 ; 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

We would normally need to normalize this function for a given value of ℎ: 

Ψ′(𝑥𝑥,ℎ) ≡
Ψ(𝑥𝑥,ℎ)

∫ Ψ(𝑥𝑥,ℎ)𝑑𝑑𝑥𝑥ℎ
−ℎ

≅
Ψ(𝑥𝑥,ℎ)

0.443994 ℎ
 

It is straightforward to show:  

lim
ℎ→0

� Ψ′(𝑥𝑥,ℎ)𝜙𝜙(𝑥𝑥)𝑑𝑑𝑑𝑑 = � 𝜙𝜙(𝑆𝑆)𝑑𝑑𝑆𝑆
𝑆𝑆𝑉𝑉

 

This normalization factor will cancel out when we compute the average, so we will neglect it.  

From this, we may define:  

� 𝜙𝜙 𝑑𝑑𝑆𝑆
𝑆𝑆

≈� Ψ(𝑥𝑥𝑖𝑖,ℎ) 𝜙𝜙𝑖𝑖 𝑑𝑑𝑖𝑖
𝑖𝑖

 

From this, we may compute the volume-averaged value of the field: 

𝜙𝜙�(𝑥𝑥) ≈
∑ 𝜙𝜙𝑖𝑖Ψ𝑖𝑖 𝑑𝑑𝑖𝑖𝑖𝑖
∑ Ψ𝑖𝑖 𝑑𝑑𝑖𝑖𝑖𝑖

 

Evaluating the surface integral in this way is mathematically equivalent to performing a smoothing 
convolution using the bump filter. The parameter ℎ effectively controls the degree of the smoothing. 

 

Example 1: Spherical Symmetry 
In the case of spherical symmetry, for a field defined in coordinates that are not necessarily spherical, 
we are attempting to compute: 

𝜙𝜙�(𝑒𝑒) ≡
∫ ∫ 𝜙𝜙(𝑒𝑒) 𝑒𝑒2 sin𝜃𝜃 𝑑𝑑𝜃𝜃𝜋𝜋

0 𝑑𝑑𝜙𝜙2𝜋𝜋
0

∫ ∫  𝑒𝑒2 sin𝜃𝜃 𝑑𝑑𝜃𝜃𝜋𝜋
0 𝑑𝑑𝜙𝜙2𝜋𝜋

0

 

We note that the symbol 𝜙𝜙 has two meanings in the above: the field to be averaged; and the azimuthal 
coordinate. We will approximate this integral using a weighting function:  

𝜙𝜙�(𝑒𝑒) ≈
∫ ∫ ∫ 𝜙𝜙(𝑒𝑒) Ψ(𝑒𝑒 − 𝑒𝑒′,ℎ) 𝑒𝑒′2 sin𝜃𝜃 𝑑𝑑𝜃𝜃𝜋𝜋

0 𝑑𝑑𝜙𝜙2𝜋𝜋
0 𝑑𝑑𝑒𝑒′∞

0

∫ ∫ ∫ Ψ(𝑒𝑒 − 𝑒𝑒′,ℎ) 𝑒𝑒′2 sin𝜃𝜃 𝑑𝑑𝜃𝜃𝜋𝜋
0 𝑑𝑑𝜙𝜙2𝜋𝜋

0 𝑑𝑑𝑒𝑒′∞
0

 



The integral weighting is based on the radial coordinate 𝑒𝑒, so we must compute that for each point in 
the field. We are not interested in the angular dependence, so we may neglect that, yielding: 

𝜙𝜙�(𝑒𝑒) ≈
∫ ∫ ∫ 𝜙𝜙�𝑒𝑒(𝑒𝑒)� Ψ(𝑒𝑒 − 𝑒𝑒′,ℎ) 𝑒𝑒′2 sin𝜃𝜃 𝑑𝑑𝜃𝜃𝜋𝜋

0 𝑑𝑑𝜙𝜙2𝜋𝜋
0 𝑑𝑑𝑒𝑒′∞

0

∫ ∫ ∫ Ψ(𝑒𝑒 − 𝑒𝑒′,ℎ) 𝑒𝑒′2 sin𝜃𝜃 𝑑𝑑𝜃𝜃𝜋𝜋
0 𝑑𝑑𝜙𝜙2𝜋𝜋

0 𝑑𝑑𝑒𝑒′∞
0

 

  

=
∫ 𝜙𝜙�𝑒𝑒(𝑒𝑒)� Ψ(𝑒𝑒 − 𝑒𝑒′,ℎ) 𝑑𝑑𝑑𝑑𝑉𝑉

∫ Ψ(𝑒𝑒 − 𝑒𝑒′,ℎ) 𝑑𝑑𝑑𝑑𝑉𝑉

 

This yields the expected average value:  

𝜙𝜙�(𝑒𝑒) ≈
∑ 𝜙𝜙𝑖𝑖Ψ𝑖𝑖 𝑑𝑑𝑖𝑖𝑖𝑖
∑ Ψ𝑖𝑖 𝑑𝑑𝑖𝑖𝑖𝑖

 

This can be implemented in Paraview, and we demonstrate this capability using a dataset generated for 
the Ristra project by Vince Chiravalle using the Fuel code. In this variant of the classical Verney problem, 
which was developed as an approximate model for spherical metal shells collapsing under loading. The 

Figure 1 Collapse of spherical Verney shell, showing the motion and thickening of the metal. This was modeled as an 
octant under the assumption of planar symmetry, using the Fuel code. The simulation author is Vince Chiravalle. 



metal shell has an initial velocity directed toward the 
center of the sphere, and it continues to collapse 
until the initial kinetic energy of the material is 
dissipated by plastic work. The simulation is very 
aggressively de-refined, and run on an octant 
assuming planar symmetry at the boundaries. The 
analysis algorithm was run on a fully spherical 
dataset obtained by reflection of the octant, and this 
is somewhat apparent in the resulting visualizations.  

Our analysis shows that peak deviations from 
spherical symmetry are small. They are most 
pronounced at the coordinate axes and at the 45° 
angle. Because the deviations are computed relative 
to the average value of this dataset, it is impossible 
to tell from this data alone whether the code is 
under- or over-predicting the values as a whole. 
However, it seems that something is different 
between the handling of the planar symmetry 
boundaries and the rest of the simulation. 

  

Figure 3 Surface and volumetric images of collapsing Verney shell, showing the distribution of errors in density 
relative to the average density value. The density is under-predicted near the planar symmetry boundary 
conditions, especially at the corners. Density is over-predicted in the center, near the box mesh joint. These results 
are relative to the average computed value; comparisons with an exact solution may yield different results. 

Figure 2  Relative error in density for the spherical Verney 
problem, taken from a slice along the planar symmetry axis. 
The artifical reflection of the octant dataset is apparent in 
the cruciform distribution of color.   



Example 2: Cylindrical Symmetry 
In the case of cylindrical symmetry (or axisymmetry), again noting that the symbol 𝜙𝜙 has two meanings, 
we are attempting to compute: 

𝜙𝜙�(𝑒𝑒, 𝑧𝑧) ≡
∫ 𝜙𝜙(𝑒𝑒) 𝑒𝑒 𝑑𝑑𝜙𝜙2𝜋𝜋
0

∫  𝑒𝑒 𝑑𝑑𝜙𝜙2𝜋𝜋
0

 

The integral weighting is now based on both the radial coordinate 𝑒𝑒 and the axial coordinate 𝑧𝑧, but we 
are again disinterested in the angular dependence, yielding:  

𝜙𝜙�(𝑒𝑒, 𝑧𝑧) ≈
∫ 𝜙𝜙�𝑒𝑒(𝑒𝑒), 𝑧𝑧(𝑒𝑒)� 𝑒𝑒 𝑑𝑑𝜙𝜙2𝜋𝜋
0

∫ 𝑒𝑒 𝑑𝑑𝜙𝜙2𝜋𝜋
0

 

The sampling becomes: 

(𝜙𝜙 ∗ Ψ)(𝑒𝑒, 𝑧𝑧,ℎ) =
1
2
� � 𝜙𝜙(𝑒𝑒′, 𝑧𝑧′)Ψ(𝑒𝑒 − 𝑒𝑒′,ℎ)Ψ(𝑧𝑧 − 𝑧𝑧′,ℎ)𝑑𝑑𝑒𝑒′

∞

0
 𝑑𝑑𝑧𝑧′

∞

−∞
 

The integration over angle is written:  

� 𝜙𝜙(𝑒𝑒, 𝑧𝑧,𝜃𝜃)𝑑𝑑𝐶𝐶
𝐶𝐶(𝑟𝑟,𝑧𝑧)

≈  � 𝜙𝜙(𝑒𝑒′, 𝑧𝑧′,𝜃𝜃)Ψ(𝑒𝑒′ − 𝑒𝑒,ℎ)Ψ(𝑧𝑧′ − 𝑧𝑧,ℎ)𝑑𝑑𝑑𝑑
𝑉𝑉

≈�𝜙𝜙𝑖𝑖Ψ(𝑒𝑒𝑖𝑖′, 𝑧𝑧𝑖𝑖′, 𝑒𝑒, 𝑧𝑧,ℎ) 𝑑𝑑𝑖𝑖
𝑖𝑖

 

This yields the expected average value: 

𝜙𝜙�(𝑒𝑒) ≈
∑ 𝜙𝜙𝑖𝑖Ψ𝑖𝑖 𝑑𝑑𝑖𝑖𝑖𝑖
∑ Ψ𝑖𝑖 𝑑𝑑𝑖𝑖𝑖𝑖

 

We can demonstrate this capability using another dataset that Vince Chiravalle generated for the Ristra 
project using the Fuel code. In this simulation, a very high-pressure gas is sandwiched between two 
concentric, cylindrical, steel shells. The rapid expansion of the gas drives the inner shell toward the axis 
of symmetry, which compresses the air in the center region until the pressure is high enough to halt the 
motion of the steel. A quadrant of the problem was simulated in three dimensions. Our analysis shows 
that there is a significant deviation from symmetry at the boundaries of the quadrant, especially near 
the axis of symmetry.  

We investigated whether the deviation in symmetry observed near the reflection planes could result 
from boundary effects in the analysis algorithm by using Paraview to reflect the data across those planes 
and do the analysis on the cylindrical data. No change was observed. Future work will examine the Fuel 
code to determine whether this error arises from the implementation of the planar symmetry boundary 
conditions.  



 

Figure 4 Late-time simulation results from the axisymmetric high-pressure gas sandwich. A high pressure gas (blue) is 
sandwiched between concentric steel shells (grey). The pressure of the gas drives the inner shell to implode toward the axis of 
symmetry until the inner gas (red, green, blue) reaches high enough pressure to halt the motion of the metal. 

Figure 5 Relative error in density for the axisymmetric high-pressure gas sandwich. The density field is lightly overlaid in order 
to provide visual context, showing the metal shells in red and the gases in blue. The highest errors are found near the axis of 
symmetry, at the planar symmetry boundaries. Interestingly, there is also significant error at the x-axis. The corresponding 
location on the y-axis (not shown) has no similar error. 



 

Figure 6 View down the axis of the highly converged center region of the axisymmetric high-pressure gas sandwich. The 
quadrant that was simulated has been reflected across the axes of symmetry. The cruciform pattern of the density errors is quite 
prominent.  



  

# trace generated using paraview version 5.8.1 
# 
# To ensure correct image size when batch processing, please search  
# for and uncomment the line `# renderView*.ViewSize = [*,*]` 
 
#### import the simple module from the paraview 
from paraview.simple import * 
#### disable automatic camera reset on 'Show' 
paraview.simple._DisableFirstRenderCameraReset() # create a new 'EnSight Reader' 
engoldcase = 
EnSightReader(CaseFileName='D:\\Visualization\\Ristra\\verney\\ensight\\engold.case') 
engoldcase.CellArrays = ['den', 'vol'] 
engoldcase.PointArrays = ['vel', 'kfix'] 
# create a new 'Merge Blocks' 
mergeBlocks1 = MergeBlocks(Input=engoldcase) 
 
# create a new 'Ghost Cells Generator' 
ghostCellsGenerator1 = GhostCellsGenerator(Input=mergeBlocks1) 
ghostCellsGenerator1.MinimumNumberOfGhostLevels = 2 
 
# create a new 'Calculator' 
calculator1 = Calculator(Input=ghostCellsGenerator1) 
calculator1.ResultArrayName = 'Coords' 
calculator1.Function = 'coords' 
 
# create a new 'Point Data to Cell Data' 
pointDatatoCellData1 = PointDatatoCellData(Input=calculator1) 
pointDatatoCellData1.ProcessAllArrays = 0 
pointDatatoCellData1.PointDataArraytoprocess = ['Coords'] 
 
# create a new 'Calculator' 
calculator2 = Calculator(Input=pointDatatoCellData1) 
calculator2.AttributeType = 'Cell Data' 
calculator2.ResultArrayName = 'CoordsR' 
calculator2.Function = 'mag(Coords)' 
 
# create a new 'Programmable Filter' 
programmableFilter1 = ProgrammableFilter(Input=calculator2) 
programmableFilter1.Script = """ 
r = inputs[0].CellData['CoordsR']  
v = inputs[0].CellData['vol'] 
m = v * inputs[0].CellData['den'] 
h = .1 
h2 = h**2 
unsorted_out = 0*r 
sortargs = argsort(r) 
unsortargs = argsort(sortargs) 
r_sorted = r[sortargs] 
m_sorted = m[sortargs] 
v_sorted = v[sortargs] 
for ind in range(len(r_sorted)): 
  r0 = r_sorted[ind] 
  min, max = searchsorted(r_sorted, (r0-h, r0+h)) 
  x2 = (r_sorted[min:max] - r0)**2 
  # This is where most of the expense is. Perhaps a faster exp function? 
  Psi = exp(h2/(x2-h2))  
  # This is also expensive: 
  unsorted_out[ind] = (sum((Psi*m_sorted[min:max]))/  
                       sum((Psi*v_sorted[min:max]))) 
print(total_times) 
output.CellData.append(unsorted_out[unsortargs], 'denbar') 
                        """ 
programmableFilter1.RequestInformationScript = '' 
programmableFilter1.RequestUpdateExtentScript = '' 
programmableFilter1.CopyArrays = 1 
programmableFilter1.PythonPath = '' 
 
# create a new 'Calculator' 
calculator3 = Calculator(Input=programmableFilter1) 
calculator3.AttributeType = 'Cell Data' 
calculator3.ResultArrayName = 'Relative Error in Density (%)' 
calculator3.Function = '(den - denbar)/denbar * 100' 



 

# trace generated using paraview version 5.8.1 
# 
# To ensure correct image size when batch processing, please search  
# for and uncomment the line `# renderView*.ViewSize = [*,*]` 
 
#### import the simple module from the paraview 
from paraview.simple import * 
#### disable automatic camera reset on 'Show' 
paraview.simple._DisableFirstRenderCameraReset() 
 
# create a new 'EnSight Reader' 
engoldcase = EnSightReader(CaseFileName='D:\\Visualization\\Ristra\\5mat\\ensight\\engold.case') 
engoldcase.CellArrays = ['vol00', 'd00', 'vol01', 'd01', 'vol02', 'd02', 'vol03', 'd03', 'vol04', 'd04'] 
 
# create a new 'Merge Blocks' 
mergeBlocks1 = MergeBlocks(Input=engoldcase) 
 
# create a new 'Ghost Cells Generator' 
ghostCellsGenerator1 = GhostCellsGenerator(Input=mergeBlocks1) 
 
# create a new 'Calculator' 
calculator1 = Calculator(Input=ghostCellsGenerator1) 
calculator1.ResultArrayName = 'coordsR' 
calculator1.Function = '(coordsX^2+coordsY^2)^.5' 
 
# create a new 'Calculator' 
calculator2 = Calculator(Input=calculator1) 
calculator2.ResultArrayName = 'z' 
calculator2.Function = 'coordsZ' 
 
# Properties modified on calculator2 
calculator2.ResultArrayName = 'z' 
calculator2.Function = 'coordsZ' 
 
# create a new 'Point Data to Cell Data' 
pointDatatoCellData1 = PointDatatoCellData(Input=calculator2) 
pointDatatoCellData1.PointDataArraytoprocess = ['coordsR', 'z'] 
 
 
# create a new 'Programmable Filter' 
programmableFilter1 = ProgrammableFilter(Input=pointDatatoCellData1) 
programmableFilter1.Script = '' 
programmableFilter1.RequestInformationScript = '' 
programmableFilter1.RequestUpdateExtentScript = '' 
programmableFilter1.PythonPath = '' 
 
# set active source 
SetActiveSource(pointDatatoCellData1) 
 
# set active source 
SetActiveSource(programmableFilter1) 
 
# Properties modified on programmableFilter1 
programmableFilter1.Script = """r = inputs[0].CellData['coordsR'] 
z = inputs[0].CellData['z'] 
m = (inputs[0].CellData['d00']*inputs[0].CellData['vol00'] + 
     inputs[0].CellData['d01']*inputs[0].CellData['vol01'] + 
     inputs[0].CellData['d02']*inputs[0].CellData['vol02'] + 
     inputs[0].CellData['d03']*inputs[0].CellData['vol03'] + 
     inputs[0].CellData['d04']*inputs[0].CellData['vol04']) 
v = (inputs[0].CellData['vol00'] + 
     inputs[0].CellData['vol01'] + 
     inputs[0].CellData['vol02'] + 
     inputs[0].CellData['vol03'] + 
     inputs[0].CellData['vol04']) 
h = 0.1 
h2 = h**2 
unsorted_out = 0*r 
sortargs = argsort(r) 
unsortargs = argsort(sortargs) 
r_sorted = r[sortargs] 
m_sorted = m[sortargs] 
z_sorted = z[sortargs] 
v_sorted = v[sortargs] 
for ind in range(len(r_sorted)): 
  r0 = r_sorted[ind]; z0 = z_sorted[ind] 
  min, max = searchsorted(r_sorted, (r0-h, r0+h)) 
  x2 = (r_sorted[min:max] - r0)**2 
  y2 = (z_sorted[min:max] - z0)**2 
  Psi = exp(1/(x2-h2))*exp(1/(y2-h2)) 
  unsorted_out[ind] = (sum((Psi*m_sorted[min:max])[y2<h2])/ 
                       sum((Psi*v_sorted[min:max])[y2<h2])) 
output.CellData.append(unsorted_out[unsortargs], 'denbar') 
""" 
programmableFilter1.RequestInformationScript = '' 
programmableFilter1.RequestUpdateExtentScript = '' 
programmableFilter1.PythonPath = '' 
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